روش تخفیف موجی شکل دومرحله ای برای مسائل مقدار اولیه

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی
  • نویسنده زینب حسن زاده
  • استاد راهنما داود خجسته سالکویه
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1391
چکیده

در این پایان نامه روش تکراری تخفیف موجی شکل و روش تکراری تخفیف موجی شکل دومرحله ای برای حل مسائل مقدار اولیه معرفی می کنیم که هر دو روش بر پایه ی روشهای تکراری ایستا می باشند. مسائل مقدار اولیه ی مطرح شده شامل دستگاه معادلات دیفرانسیل معمولی و دستگاه معادلات دیفرانسیل جبری است. هدف از معرفی این روشهای تکراری تبدیل دستگاه معادلات دیفرانسیل بزرگتر به زیردستگاههای کوچکتر است که این کار با استفاده از شکافت ماتریسهای ضرایب دستگاه صورت می گیرد. روش تکراری تخفیف موجی شکل دومرحله ای از افزودن تکرارهای درونی به روش تکراری تخفیف موجی شکل حاصل می شود که با این عمل سرعت همگرایی بیشتر می شود. با استفاده از نتایج عددی حاصل، به مقایسه ی سرعت همگرایی و دقت این روش ها می پردازیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش های فوق تخفیف موجی شکل غیرایستا برای دستگاه معادلات انتگرال آبل

در این پایانامه روش های فوق تخفیف موجی شکل غیر ایستا برای معادلات آبل معرفی می شوند و تحلیل همگرایی این روش ها مورد بررسی قرار می گیرند. سپس روش های فوق تخفیف موجی شکل موازی کامل به طور ویژه ای مورد بررسی قرار می گیرند و روش های ریچاردسون غیر ایستا برای بهینه کردن نسبت همگرایی ساخته شده و تخمین خطای آن بدست می آید. سپس با فرمول بندی جدید‏، روش فوق تخفیف موجی شکل غیر ایستا برای دستگاه معادلات با...

بهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد

در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.

متن کامل

همگرایی روش های اصلاح خطا برای حل مسائل مقدار اولیه

در این پایان نامه روش های اصلاح خطا ی تک گامی نیمه صریحecm)‎)از مرتبه ی بالا برای حل مسائل مقدار اولیه توسعه داده می شوند.‎‎‎ecm ‎ همگرایی بالا از مرتبه ی‎‎ را بدون هیچگونه فرآیند تکراری‏، که در اکثر روش های ضمنی نیاز است‏، فراهم می آورد. این کار با ساختن یک تقریب موضعی با خطای باقیمانده از مرتبه ی در هر گام زمانی امکان پذیر است. به عنوان مثال، یک تقریب درجه ی دو موضعی ساخته می شود. علاوه براین...

کاربرد روش اختلال هموتوپی برای مسائل مقدار اولیه کسری

بعد ازظهورابررایانه ها، مشکل پیدا کردن جواب مسائل خطی تقریباً حل شده است. باوجود این، هنوز حل مسائل غیرخطی، بالاخص یافتن جواب تحلیلی این نوع مسائل آسان نیست. هر چند تکنیک های حل تحلیلی مسائل غیرخطی پیشرفت چشم گیری داشته است،اما هنوز نتوانسته است به طور کامل رضایت ریاضی دانان را جلب نماید. تکنیک های اختلالی از جمله روش های پرکاربرد برای بدست آوردن جواب های تحلیلی مسائل غیرخطی است که نتایج بدست آم...

15 صفحه اول

خانواده ای از روش های مقدار مرزی p-پایدار برای مسائل مقدار اولیه ی مرتبه ی دوم

در این پایان نامه، خانواده ای از روش های چند گامی خطی، به عنوان روش های مقدار مرزی برای حل عددی مسائل مقدار اولیه ی معادلات دیفرانسیل مرتبه ی دوم نوع خاص، معرفی می شود. معمولا ثابت می شود که این نوع روش ها ‎-p‎پایدار از مرتبه ی بالای دلخواه هستند و این خصوصیت بر محدودیتی که لامبرت و واتسون بر روش های چند گامی خطی ثابت کرده اند، غلبه می کند. دسته روش جدید pgscms نامیده می شود که مخفف روش های تعم...

15 صفحه اول

وجود و یکتایی برخی مسائل مقدار مرزی و مقدار اولیه

این پایان نامه مشتمل بر سه فصل است. در فصل اول به بیان مفاهیم اساسی مورد نیاز، عملگرهای کاملاً پیوسته وبعضی از قضیه ها، مانند: قضیه مهم نقطه ثابت شاودر که در فصل های بعد به کار می روند، می پردازیم. در فصل دوم وجود ویکتایی جواب برای ،یک مسئله مقدار مرزی از درجه چهارم را با استفاده از تعاریف ،جواب پایینی وبالایی وشرط ناگوما بررسی می کنیم. در فصل سوم با استفاده از لم های مقدماتی وجود ویکتایی برای ی...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023